organic compounds

Acta Crystallographica Section C Crystal Structure Communications ISSN 0108-2701

trans-(1*R*,2*R*)-1-Benzyl-2-phenylcyclopropanecarboxylic acid

Henryk Krawczyk,^a Katarzyna Wąsek,^a Jacek Kędzia,^a Jakub Wojciechowski^b and Wojciech M. Wolf^b*

^aInstitute of Organic Chemistry, Technical University of Łódź, ul. Żeromskiego 116, 90-924 Łódź, Poland, and ^bInstitute of General and Ecological Chemistry, Technical University of Łódź, ul. Żeromskiego 116, 90-924 Łódź, Poland Correspondence e-mail: wmwolf@p.lodz.pl

Received 11 September 2007 Accepted 16 October 2007 Online 22 December 2007

The cyclopropane ring of the title compound, $C_{17}H_{16}O_2$, shows a high level of substituent-induced bond-length asymmetry. The carboxyl group adopts a conformation that prompts electron-density transfer from the ring towards the carbonyl π system.

Comment

Cyclopropanes are interesting building blocks often used in modern organic synthesis (de Meijere et al., 2006). In particular, cyclopropanecarboxylate groups are found in a number of biologically active species (Tombo & Bellus, 1991). Their synthesis is mostly based on a classical homologues Wittig reaction (Donaldson, 2001). Recently, we proposed a novel method based on transformation of the substituted α -phosphono-y-lactones into the corresponding ethyl cyclopropanecarboxylates by treatment with sodium ethoxide in boiling tetrahydrofuran (Krawczyk et al., 2005, 2008). The title compound, (I), is a key product of this synthesis. Moreover, cyclopropane is an obvious example of a simple chemical system characterized by a substantial ring strain energy. Its molecular orbitals are prone to interactions with the exocyclic π electrons (Cameron *et al.*, 1990). Spectroscopic and chemical studies have shown that the cyclopropyl group is similar to a double bond in many respects (Lauher & Ibers, 1975; Jason & Ibers, 1977).

A view of (I) with the atom-numbering scheme is shown in Fig. 1. The endocyclic C–C bonds show a distinctive bondlength asymmetry. The shortest bond (C1–C2; Table 1) is located opposite the carboxyl and benzyl substituents, while the longest (C2–C3) is positioned in front of the unsubstituted endocyclic C1 atom. C1–C3 is a distal bond for the

phenyl substituent. Substituent-induced bond-length asymmetry in cyclopropanes was studied in a very systematic way by Allen (1980). He demonstrated that interactions of the Walsh (1947, 1949) orbitals with a π system of the substituent are responsible for the bond-length differences. In particular, for the carboxyl and carboxylate group, the maximum overlap occurs if the torsion angle τ ($X_{n,m}$ -C-C=O) is 0 or 180° ($X_{n,m}$ is the mid-point of the distal C_n-C_m bond). For the title compound, the value is $-164.6 (2)^{\circ}$ (the *trans-gauche* conformation) and indicates a high level of orbital interactions. For the phenyl substituent, Allen suggests to calculate τ as an average of the two torsion angles $X_{C1,C3}$ -C2-C12-C13 and $X_{C1,C3}$ -C2-C12-C17; these angles should be normalized to the range $(-90, 90^{\circ})$. The value calculated for (I) $[\tau = 63.4 (4)^{\circ}]$ indicates that the phenyl ring adopts a conformation intermediate between gauche and perpendi*cular*. The vicinal C3–C4 and C2–C12 bond lengths are very close to the model values (1.476 and 1.502 Å) as specified by Allen for the carboxylate and phenyl substituents, respectively.

The *trans-gauche* conformation of the carboxylic acid substituent prompts electronic interactions involving the bonding σ,π and antibonding σ^*,π^* orbitals. The most important interactions (Table 3 and Fig. 2) were computed by the Weinhold natural bond orbitals deletion procedure (Glendening *et al.*, 1992) for the wavefunctions calculated with *GAUSSIAN03* (Frisch *et al.*, 2004) at the B3LYP/6– 311++G(*d,p*) level of theory for the X-ray-determined coordinates.

In particular, the endocyclic C1–C3 and C2–C3 bonds participate in electron-density transfer towards the carbonyl group in a σ - π * fashion (Graczyk & Mikołajczyk, 1994) (28.5 and 11.6 kJ mol⁻¹, respectively), while the reverse backdonation is much weaker (1.8 and 6.6 kJ mol⁻¹, respectively). In comparison with the above effect, interaction of the phenyl ring with the cyclopropane ring has a more complex character and involves significant mutual σ - π * and σ *- π interactions (19.7 and 13.1 kJ mol⁻¹, respectively).

In the crystal, molecules form centrosymmetric dimers connected by strong hydrogen bonds (Table 2) linking

Figure 1

The molecule of the title compound. Displacement ellipsoids are drawn at the 50% probability level.

carboxyl groups of both monomers. In terms of graph-set terminology (Etter *et al.*, 1990; Bernstein *et al.*, 1995), this system can be described as $R_2^2(8)$.

Experimental

To a suspension of sodium hydride (6.0 mmol) and α -diethoxyphosphoryl- α -benzyl- γ -phenyl- γ -butyrolactone (6.0 mmol) in tetrahydrofuran (15 ml) was added dropwise under an argon atmosphere at room temperature a solution of ethanol (0.40 ml) in tetrahydrofuran (15 ml). The reaction mixture was stirred for 0.5 h and then heated under reflux for 8 h. After cooling to room temperature, saturated NaCl solution (5 ml) was added, and the tetrahydrofuran was evaporated under reduced pressure. The residue was extracted with dichloromethane (3 × 15 ml) and dried (Na₂SO₄). After evaporation, the crude product was purified by column chromatography and subsequently hydrolyzed to give (I). Good quality single crystals were selected from the reaction mixture (Krawczyk *et al.*, 2007).

Crystal	data
---------	------

$C_{17}H_{16}O_2$
$M_r = 252.30$
Triclinic, P1
a = 5.9983 (2) Å
b = 9.5439 (4) Å
c = 12.7293 (5) Å
$\alpha = 111.330 \ (1)^{\circ}$
$\beta = 92.188 \ (1)^{\circ}$

Data collection

Bruker SMART APEX diffractometer Absorption correction: multi-scan (SHELXTL; Bruker, 2003) $T_{min} = 0.872, T_{max} = 0.988$

Refinement

 $R[F^2 > 2\sigma(F^2)] = 0.043$ $wR(F^2) = 0.112$ S = 1.072348 reflections 176 parameters 9804 measured reflections 2348 independent reflections 2270 reflections with $I > 2\sigma(I)$ $R_{\text{int}} = 0.021$

 $\gamma = 97.965 \ (1)^{\circ}$

Z = 2

V = 669.15 (4) Å³

Mo $K\alpha$ radiation $\mu = 0.08 \text{ mm}^{-1}$ T = 293 (2) K $0.50 \times 0.20 \times 0.15 \text{ mm}$

H atoms treated by a mixture of independent and constrained refinement
$$\begin{split} &\Delta\rho_{max}=0.16\ e\ \text{\AA}^{-3}\\ &\Delta\rho_{min}=-0.14\ e\ \text{\AA}^{-3} \end{split}$$

Table 1

Selected geometric parameters (Å, °).

C1-C2	1.481 (2)	C3-C4	1.4779 (19)
C1-C3	1.508 (2)	O2-C4	1.2362 (17)
C2-C3	1.540 (2)	C3-C5	1.5152 (19)
C2-C12	1.491 (2)		. ,
C2-C1-C3	62.02 (10)	C1-C3-C2	58.10 (10)
C1-C2-C3	59.88 (10)		
C1-C3-C4-O2	161.92 (14)	C1-C2-C12-C13	27.5 (2)
C2-C3-C4-O2	-132.99 (14)	C1-C2-C12-C17	-155.23 (15)

Table 2

Hydrogen-bond geometry (Å, °).

 $D-H\cdots A$ D-H $H\cdots A$ $D\cdots A$ $D-H\cdots A$
 $O1-H1\cdots O2^i$ 1.02 (3)
 1.61 (3)
 2.629 (2)
 175 (2)

Symmetry code: (i) -x + 2, -y + 2, -z.

Table 3

Energy of the selected electronic interactions calculated with the natural bond orbital (NBO) theory.

Type of interaction	Stabilization energy (kJ mol ⁻¹)
$\sigma(C1-C3)-\pi^*(C4=O2)$	28.5
$\pi(C4=O2)-\sigma^*(C1-C3)$	1.8
$\sigma(C2-C3)-\pi^*(C4=O2)$	11.6
$\pi(C4=O2) - \sigma^*(C2-C3)$	6.6
$\sigma(C1-C2)-\pi^*(C12-C17)$	19.7
π (C12-C17)- σ *(C1-C2)	13.1

H atoms were located in a difference Fourier map. Those bonded to C atoms were refined as riding. The hydroxyl atom H1 was refined without restraints.

Data collection: *SMART* (Bruker, 2003); cell refinement: *SAINT-Plus* (Bruker, 2003); data reduction: *SAINT-Plus*; program(s) used to solve structure: *SHELXTL* (Bruker, 2003); program(s) used to refine structure: *SHELXTL*; molecular graphics: *SHELXTL*; software used

Figure 2

Natural bond orbitals, as in (I), involved in the electron-density transfer from the vicinal (a) C1-C3 and (b) C2-C3 bonds to the carbonyl group C4=O2, accompanied by (c) the orbitals describing the major cyclopropyl-phenyl interactions.

to prepare material for publication: *SHELXTL* and *publCIF* (Westrip, 2008).

The natural bond orbital analysis was performed at ACK CYFRONET, Kraków, Poland; support through computational grants (Nos. 055/1999 and 056/1999) is gratefully acknowledged.

Supplementary data for this paper are available from the IUCr electronic archives (Reference: AV3113). Services for accessing these data are described at the back of the journal.

References

Allen, F. H. (1980). Acta Cryst. B36, 81-96.

- Bernstein, J., Davis, R. E., Shimoni, L. & Chang, N.-L. (1995). Angew. Chem. Int. Ed. Engl. 34, 1555–1575.
- Bruker (2003). SAINT-Plus (Version 6.45A), SHELXTL (Version 6.14) and SMART (Version 5.629). Bruker AXS Inc., Madison, Wisconsin, USA.

Cameron, T. S., Linden, A. & Jochem, K. (1990). Acta Cryst. C46, 2110–2115. Donaldson, W. A. (2001). Tetrahedron, 57, 8589–8627.

- Etter, M. C., MacDonald, J. C. & Bernstein, J. (1990). Acta Cryst. B46, 256-262.
- Frisch, M. J. et al. (2004). GAUSSIAN03. Revision C.02. Gaussian Inc., Pittsbburgh, PA, USA.
- Glendening, E. D., Reed, A. E., Carpenter, J. E. & Weinhold, F. (1992). NBO Program Manual. University of Wisconsin, USA.
- Graczyk, P. P. & Mikołajczyk, M. (1994). *Topics in Stereochemistry*, Vol. 21, edited by E. L. Eliel & S. H. Wilen, pp. 159–349. New York: Wiley.
- Jason, M. E. & Ibers, J. A. (1977). J. Am. Chem. Soc. 99, 6012-6021.
- Krawczyk, H., Wąsek, K. & Kędzia, J. (2005). Synlett, 17, 2648–2652.
- Krawczyk, H., Wąsek, K., Kędzia, J., Wojciechowski, J. & Wolf, W. M. (2008). *Org. Biomol. Chem.* In the press.
- Lauher, J. W. & Ibers, J. A. (1975). J. Am. Chem. Soc. 97, 561-567.
- Meijere, A. de, Kozhushkov, S. I. & Schill, H. (2006). Chem. Rev. 106, 4926-
- 4996. Tombo, G. M. R. & Bellus, D. (1991). Angew. Chem. Int. Ed. Engl. 30, 1193– 1215.
- Walsh, A. D. (1947). Nature (London), 159, 712-713.
- Walsh, A. D. (1949). Trans. Faraday Soc. 45, 179-190.
- Westrip, S. P. (2008). publCIF. In preparation.