Acta Crystallographica Section C

Crystal Structure

Communications
ISSN 0108-2701

trans-(1R,2R)-1-Benzyl-2-phenylcyclopropanecarboxylic acid

Henryk Krawczyk, ${ }^{\text {a }}$ Katarzyna Wąsek, ${ }^{\text {a }}$ Jacek Kędzia, ${ }^{\text {a }}$ Jakub Wojciechowski ${ }^{\text {b }}$ and Wojciech M. Wolf ${ }^{\text {b* }}$

${ }^{\text {a }}$ Institute of Organic Chemistry, Technical University of Łódź, ul. Żeromskiego 116, 90-924 Łódź, Poland, and ${ }^{\mathbf{b}}$ Institute of General and Ecological Chemistry, Technical University of Łódź, ul. Żeromskiego 116, 90-924 Łódź, Poland
Correspondence e-mail: wmwolf@p.lodz.pl
Received 11 September 2007
Accepted 16 October 2007
Online 22 December 2007
The cyclopropane ring of the title compound, $\mathrm{C}_{17} \mathrm{H}_{16} \mathrm{O}_{2}$, shows a high level of substituent-induced bond-length asymmetry. The carboxyl group adopts a conformation that prompts electron-density transfer from the ring towards the carbonyl π system.

Comment

Cyclopropanes are interesting building blocks often used in modern organic synthesis (de Meijere et al., 2006). In particular, cyclopropanecarboxylate groups are found in a number of biologically active species (Tombo \& Bellus, 1991). Their synthesis is mostly based on a classical homologues Wittig reaction (Donaldson, 2001). Recently, we proposed a novel method based on transformation of the substituted α-phos-phono- γ-lactones into the corresponding ethyl cyclopropanecarboxylates by treatment with sodium ethoxide in boiling tetrahydrofuran (Krawczyk et al., 2005, 2008). The title compound, (I), is a key product of this synthesis. Moreover, cyclopropane is an obvious example of a simple chemical system characterized by a substantial ring strain energy. Its molecular orbitals are prone to interactions with the exocyclic π electrons (Cameron et al., 1990). Spectroscopic and chemical studies have shown that the cyclopropyl group is similar to a double bond in many respects (Lauher \& Ibers, 1975; Jason \& Ibers, 1977).

(I)

A view of (I) with the atom-numbering scheme is shown in Fig. 1. The endocyclic $\mathrm{C}-\mathrm{C}$ bonds show a distinctive bondlength asymmetry. The shortest bond ($\mathrm{C} 1-\mathrm{C} 2$; Table 1) is located opposite the carboxyl and benzyl substituents, while the longest $(\mathrm{C} 2-\mathrm{C} 3)$ is positioned in front of the unsubstituted endocyclic C 1 atom. $\mathrm{C} 1-\mathrm{C} 3$ is a distal bond for the
phenyl substituent. Substituent-induced bond-length asymmetry in cyclopropanes was studied in a very systematic way by Allen (1980). He demonstrated that interactions of the Walsh $(1947,1949)$ orbitals with a π system of the substituent are responsible for the bond-length differences. In particular, for the carboxyl and carboxylate group, the maximum overlap occurs if the torsion angle $\tau\left(X_{n, m}-\mathrm{C}-\mathrm{C}=\mathrm{O}\right)$ is 0 or 180° ($X_{n, m}$ is the mid-point of the distal $\mathrm{C}_{n}-\mathrm{C}_{m}$ bond). For the title compound, the value is $-164.6(2)^{\circ}$ (the trans-gauche conformation) and indicates a high level of orbital interactions. For the phenyl substituent, Allen suggests to calculate τ as an average of the two torsion angles $X_{\mathrm{C} 1, \mathrm{C} 3}-\mathrm{C} 2-\mathrm{C} 12-$ C 13 and $X_{\mathrm{C} 1, \mathrm{C} 3}-\mathrm{C} 2-\mathrm{C} 12-\mathrm{C} 17$; these angles should be normalized to the range $\left(-90,90^{\circ}\right)$. The value calculated for (I) $\left[\tau=63.4(4)^{\circ}\right]$ indicates that the phenyl ring adopts a conformation intermediate between gauche and perpendicular. The vicinal $\mathrm{C} 3-\mathrm{C} 4$ and $\mathrm{C} 2-\mathrm{C} 12$ bond lengths are very close to the model values (1.476 and $1.502 \AA$) as specified by Allen for the carboxylate and phenyl substituents, respectively.

The trans-gauche conformation of the carboxylic acid substituent prompts electronic interactions involving the bonding σ, π and antibonding σ^{*}, π^{*} orbitals. The most important interactions (Table 3 and Fig. 2) were computed by the Weinhold natural bond orbitals deletion procedure (Glendening et al., 1992) for the wavefunctions calculated with GAUSSIAN03 (Frisch et al., 2004) at the B3LYP/6$311++\mathrm{G}(d, p)$ level of theory for the X-ray-determined coordinates.

In particular, the endocyclic $\mathrm{C} 1-\mathrm{C} 3$ and $\mathrm{C} 2-\mathrm{C} 3$ bonds participate in electron-density transfer towards the carbonyl group in a $\sigma-\pi^{*}$ fashion (Graczyk \& Mikołajczyk, 1994) (28.5 and $11.6 \mathrm{~kJ} \mathrm{~mol}^{-1}$, respectively), while the reverse backdonation is much weaker (1.8 and $6.6 \mathrm{~kJ} \mathrm{~mol}^{-1}$, respectively). In comparison with the above effect, interaction of the phenyl ring with the cyclopropane ring has a more complex character and involves significant mutual $\sigma-\pi^{*}$ and $\sigma^{*}-\pi$ interactions (19.7 and $13.1 \mathrm{~kJ} \mathrm{~mol}^{-1}$, respectively).

In the crystal, molecules form centrosymmetric dimers connected by strong hydrogen bonds (Table 2) linking

Figure 1
The molecule of the title compound. Displacement ellipsoids are drawn at the 50% probability level.
carboxyl groups of both monomers. In terms of graph-set terminology (Etter et al., 1990; Bernstein et al., 1995), this system can be described as $R_{2}^{2}(8)$.

Experimental

To a suspension of sodium hydride (6.0 mmol) and α-diethoxy-phosphoryl- α-benzyl $-\gamma$-phenyl $-\gamma$-butyrolactone (6.0 mmol) in tetrahydrofuran (15 ml) was added dropwise under an argon atmosphere at room temperature a solution of ethanol $(0.40 \mathrm{ml})$ in tetrahydrofuran $(15 \mathrm{ml})$. The reaction mixture was stirred for 0.5 h and then heated under reflux for 8 h . After cooling to room temperature, saturated NaCl solution (5 ml) was added, and the tetrahydrofuran was evaporated under reduced pressure. The residue was extracted with dichloromethane $(3 \times 15 \mathrm{ml})$ and dried $\left(\mathrm{Na}_{2} \mathrm{SO}_{4}\right)$. After evaporation, the crude product was purified by column chromatography and subsequently hydrolyzed to give (I). Good quality single crystals were selected from the reaction mixture (Krawczyk et al., 2007).

Crystal data

$$
\begin{array}{ll}
\mathrm{C}_{17} \mathrm{H}_{16} \mathrm{O}_{2} & \gamma=97.965(1)^{\circ} \\
M_{r}=252.30 & V=669.15(4) \AA^{3} \\
\text { Triclinic, } P \overline{1} & Z=2 \\
a=5.9983(2) \AA & \text { Mo } K \alpha \text { radiation } \\
b=9.5439(4) \AA & \mu=0.08 \mathrm{~mm}^{-1} \\
c=12.7293(5) \AA & T=293(2) \mathrm{K} \\
\alpha=111.330(1)^{\circ} & 0.50 \times 0.20 \times 0.15 \mathrm{~mm} \\
\beta=92.188(1)^{\circ} &
\end{array}
$$

Data collection

Bruker SMART APEX diffractometer
Absorption correction: multi-scan (SHELXTL; Bruker, 2003)
$T_{\text {min }}=0.872, T_{\text {max }}=0.988$

Refinement

$R\left[F^{2}>2 \sigma\left(F^{2}\right)\right]=0.043$
$w R\left(F^{2}\right)=0.112$
$S=1.07$
2348 reflections
176 parameters

Table 1
Selected geometric parameters ($\left({ }^{\circ},{ }^{\circ}\right)$.

$\mathrm{C} 1-\mathrm{C} 2$	$1.481(2)$	$\mathrm{C} 3-\mathrm{C} 4$	$1.4779(19)$
$\mathrm{C} 1-\mathrm{C} 3$	$1.508(2)$	$\mathrm{O} 2-\mathrm{C} 4$	$1.2362(17)$
$\mathrm{C} 2-\mathrm{C} 3$	$1.540(2)$	$\mathrm{C} 3-\mathrm{C} 5$	$1.5152(19)$
$\mathrm{C} 2-\mathrm{C} 12$	$1.491(2)$		
$\mathrm{C} 2-\mathrm{C} 1-\mathrm{C} 3$	$62.02(10)$	$\mathrm{C} 1-\mathrm{C} 3-\mathrm{C} 2$	$58.10(10)$
$\mathrm{C} 1-\mathrm{C} 2-\mathrm{C} 3$	$59.88(10)$		
$\mathrm{C} 1-\mathrm{C} 3-\mathrm{C} 4-\mathrm{O} 2$	$161.92(14)$	$\mathrm{C} 1-\mathrm{C} 2-\mathrm{C} 12-\mathrm{C} 13$	$27.5(2)$
$\mathrm{C} 2-\mathrm{C} 3-\mathrm{C} 4-\mathrm{O} 2$	$-132.99(14)$	$\mathrm{C} 1-\mathrm{C} 2-\mathrm{C} 12-\mathrm{C} 17$	$-155.23(15)$

Table 2
Hydrogen-bond geometry $\left(\AA,^{\circ}\right)$.

$D-\mathrm{H} \cdots A$	$D-\mathrm{H}$	$\mathrm{H} \cdots A$	$D \cdots A$	$D-\mathrm{H} \cdots A$
$\mathrm{O} 1-\mathrm{H} 1 \cdots \mathrm{O} 2^{\mathrm{i}}$	$1.02(3)$	$1.61(3)$	$2.629(2)$	$175(2)$
Symmetry code: (i) $-x+2,-y+2,-z$				

Table 3
Energy of the selected electronic interactions calculated with the natural bond orbital (NBO) theory.

Type of interaction	Stabilization energy $\left(\mathrm{kJ} \mathrm{mol}^{-1}\right)$
$\sigma(\mathrm{C} 1-\mathrm{C} 3)-\pi^{*}(\mathrm{C} 4=\mathrm{O} 2)$	28.5
$\pi(\mathrm{C} 4=\mathrm{O} 2)-\sigma^{*}(\mathrm{C} 1-\mathrm{C} 3)$	1.8
$\sigma(\mathrm{C} 2-\mathrm{C} 3)-\pi^{*}(\mathrm{C} 4=\mathrm{O} 2)$	11.6
$\pi(\mathrm{C} 4=\mathrm{O} 2)-\sigma^{*}(\mathrm{C} 2-\mathrm{C} 3)$	6.6
$\sigma(\mathrm{C} 1-\mathrm{C} 2)-\pi^{*}(\mathrm{C} 12-\mathrm{C} 17)$	19.7
$\pi(\mathrm{C} 12-\mathrm{C} 17)-\sigma^{*}(\mathrm{C} 1-\mathrm{C} 2)$	13.1

H atoms were located in a difference Fourier map. Those bonded to C atoms were refined as riding. The hydroxyl atom H 1 was refined without restraints.

Data collection: SMART (Bruker, 2003); cell refinement: SAINTPlus (Bruker, 2003); data reduction: SAINT-Plus; program(s) used to solve structure: SHELXTL (Bruker, 2003); program(s) used to refine structure: SHELXTL; molecular graphics: SHELXTL; software used

Figure 2
Natural bond orbitals, as in (I), involved in the electron-density transfer from the vicinal (a) C1-C3 and (b) C2-C3 bonds to the carbonyl group $\mathrm{C} 4=\mathrm{O} 2$, accompanied by (c) the orbitals describing the major cyclopropyl-phenyl interactions.

organic compounds

to prepare material for publication: SHELXTL and publCIF (Westrip, 2008).

The natural bond orbital analysis was performed at ACK CYFRONET, Kraków, Poland; support through computational grants (Nos. 055/1999 and 056/1999) is gratefully acknowledged.

Supplementary data for this paper are available from the IUCr electronic archives (Reference: AV3113). Services for accessing these data are described at the back of the journal.

References

Allen, F. H. (1980). Acta Cryst. B36, 81-96.
Bernstein, J., Davis, R. E., Shimoni, L. \& Chang, N.-L. (1995). Angew. Chem. Int. Ed. Engl. 34, 1555-1575.
Bruker (2003). SAINT-Plus (Version 6.45A), SHELXTL (Version 6.14) and SMART (Version 5.629). Bruker AXS Inc., Madison, Wisconsin, USA.

Cameron, T. S., Linden, A. \& Jochem, K. (1990). Acta Cryst. C46, 2110-2115.
Donaldson, W. A. (2001). Tetrahedron, 57, 8589-8627.
Etter, M. C., MacDonald, J. C. \& Bernstein, J. (1990). Acta Cryst. B46, 256262.

Frisch, M. J. et al. (2004). GAUSSIAN03. Revision C.02. Gaussian Inc., Pittsbburgh, PA, USA.
Glendening, E. D., Reed, A. E., Carpenter, J. E. \& Weinhold, F. (1992). NBO Program Manual. University of Wisconsin, USA.
Graczyk, P. P. \& Mikołajczyk, M. (1994). Topics in Stereochemistry, Vol. 21, edited by E. L. Eliel \& S. H. Wilen, pp. 159-349. New York: Wiley
Jason, M. E. \& Ibers, J. A. (1977). J. Am. Chem. Soc. 99, 6012-6021.
Krawczyk, H., Wąsek, K. \& Kędzia, J. (2005). Synlett, 17, 2648-2652.
Krawczyk, H., Wąsek, K., Kędzia, J., Wojciechowski, J. \& Wolf, W. M. (2008). Org. Biomol. Chem. In the press.
Lauher, J. W. \& Ibers, J. A. (1975). J. Am. Chem. Soc. 97, 561-567.
Meijere, A. de, Kozhushkov, S. I. \& Schill, H. (2006). Chem. Rev. 106, $4926-$ 4996.

Tombo, G. M. R. \& Bellus, D. (1991). Angew. Chem. Int. Ed. Engl. 30, 11931215.

Walsh, A. D. (1947). Nature (London), 159, 712-713.
Walsh, A. D. (1949). Trans. Faraday Soc. 45, 179-190.
Westrip, S. P. (2008). publCIF. In preparation.

